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Abstract. It is generally argued that the energy dissipation of three-dimensional turbulent 
flow is concentrated on a set with non-integer Hausdorff dimension. Recently, in order to 
explain experimental data, it has been proposed that this set does not possess a global 
dilatation invariance: it can be considered to be a multifractal set. In this paper we review 
the concept of multifractal sets in both turbulent flows and dynamical systems using a 
generalisation of the P-model. 

1. Introduction 

One of the most tested hypotheses in the theory of fully developed turbulence is that 
the small-scale statistics of turbulent flows obeys universal scaling properties. This is 
the celebrated Kolmogorov theory (1941, hereafter K41) which is still the only predic- 
tion made on the statistical properties of turbulence. The K41 theory is based upon 
the concept of self-similarity of the inertial range and upon the dependence of the 
probability distribution on the energy dissipation. Deviations of the K41 theory are 
commonly argued to be given by intermittency in the flow as first pointed out by 
Landau (Landau and Lifshitz 1971). Since Landau’s remark there has been a great 
effort in generalising the K41 theory to include the intermittency correction, however 
no definite theoretical framework has been found to deal with the problem of intermit- 
tency. It has been argued that intermittency is due to the singularity of the Navier- 
Stokes equations in the small viscosity limit. It has been proposed by Mandelbrot 
(1974) that singularities are concentrated on a set A c R 3  with non-integer Hausdorff 
dimension. In § 2 we shall see how this is related to the scale invariance of the 
Navier-Stokes equations. 

It is important to understand how the dynamical properties of nonlinear energy 
transfer among the various scales of motions determine the geometrical properties of 
the set A. Frisch et a1 (1978, hereafter FNS) have clarified this point introducing the 
well known P-model, also reviewed in § 2. The fundamental ingredients of these 
models is that there is a detailed balance of energy transfer in the inertial range. For 
detailed balance of energy transfer we mean that there is an exact balance in any shell 
k, k + d k  ( k  = wavenumber) between input/output energy. If we relax this constraint, 
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we must then introduce a hierarchy of sets Ai on which singularities with different 
scaling properties are concentrated. The mechanism of energy transfer has to be 
constrained, not in detailed balance between local interaction in the k-space, but on 
the average. In other words we look at the history of the nonlinear interactions both 
in space and in time. It turns out that to this aim we need to introduce the concept 
of multifractal sets as defined in Frisch and Parisi (1983) and reviewed in § 2. Whether 
turbulence can be described by ordinary fractal sets or multifractal sets can be inferred 
only from experimental data at this stage. Within the present experimental results we 
show that there are some indications that multifractal sets are indeed necessary to 
describe the properties of structure functions in turbulent flows. In § 3 we propose a 
simple model, the random P-model, which generalises the results of FNS to take into 
account the multifractal structure of turbulence. 

Multifractal sets, which originally were embedded in the weight curdling of Mandel- 
brot (1974), have been recently invoked by Paladin and Vulpiani (1984) to study the 
attractor sets in deterministic chaotic systems. It is the aim of this paper to review the 
concept of multifractal sets not only for what concerns the turbulence theory but also 
in connection with strange attractors of dynamical systems. This is done in § 4 together 
with some numerical analysis of simple attractors. 

2. Turbulence and multifractal sets 

Let us consider the Navier-Stokes equations: 

a , V + (  V *  V ) V =  - V p / p  + v AV, (2.1) 

In the limit v + 0 the equations (2.1) are formally invariant under the scaling transforma- 
tions (see Frisch 1983): 

r +  Ar, V + A h V  A >O, t + A l - h f .  (2.2) 

v + A + I  U. (2.3) 

For finite v we can still ensure invariance of equations (2.1) if 

Note that the Reynolds number V L / v  is invariant under transformations (2.2) and 
(2.3). Assuming that small-scale turbulence is statistically invariant under the above 
scaling law, one can select h by using physical arguments. Kolmogorov (1941) proposed 
that the scaling laws of turbulence preserve energy transfer, assuming that nonlinear 
interactions are local in the k-space. This assumption implies that energy dissipation 
E is invariant under the scaling laws (2.3). By definition E = v((V V)’)  where (, . .) 
denotes ensemble average. It follows that: 

E + (2.4) 
The invariance of E implies h = 1/3. The K41 theory has strong implications for the 
velocity gradients V V. Let us consider the quantity 

A V / A X ” ’ = [  V ( X ) -  V ( Y ) ] / ( X - Y ) ” ’ .  

Scaling laws (2.3) with h = 1/3 imply 

lim A V / A x l ”  Z 0 .  
x - Y  

(2.5) 
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Thus the velocity gradient is singular. However the above considerations do not imply 
that the set of singular points of the Navier-Stokes equations are space-filling as 
originally assumed by Kolmogorov. Following Mandelbrot (1974), we can define the 
Hausdorfl dimension D of the set of singular points ( 2 . 5 ) .  If D < 3 then the probability 
for a point to be singular behaves as A 3 - 0 .  It follows that energy dissipation is a 
fluctuating quantity in space. Its probability distribution determines the value of D. 
This is the physical basis of Landau’s remark. 

A clarifying picture of the mechanism underlying the above ideas is obtained 
following FNS. Let us consider the scales: 

I ,  = 102-, 

where I ,  is the scale on which energy is injected. Nonlinear interactions produce on 
the average N eddies of scale i.e. energy is transferred from scale I ,  to the N 
eddies of scale I n i l .  These N eddies occupy a fraction p (OS p S 1)  of the 1,-eddy 
volume. After n generations the volume occupied by ‘active’ eddies is p”. If V, is the 
velocity difference of an active 1,-eddy, then the energy per unit mass on scale I ,  is 

En - p n  V2,, 

E ,  -pnv3,/1,. 
and the energy transfer is 

Assuming that 

E ,  - E = constant, (2.6) 

we obtain V, - E ~ / ~ E ! , / ~ P - ’ / ~  where P - ( 1n /10)3 -D and p = 2D-3 .  Benzi and Vulpiani 
( 1980) have estimated D = 3 - 2/3 in good agreement with known data on the correla- 
tion functions of E.  Either the P-model and the scaling law (2.3) with h = 1/3 predicts 
a linear behaviour of the coefficients 

( A  V‘) - rSp, Lp = hp -t 3 - DF, h = (DF - 2)/3. 

In figure 1 we report data on J p  for various experimental tests (Anselmet et a1 1983). 
Although a linear fit is not inconsistent with the experimental accuracy, there is a 

I I 

I t  

2 4 6 8 10 12 14 16 18 
P 

Figure 1. &, against p .  Dots and circles represent experimental data by Anselmet et a/ 
(1983). Full line is the P-model of FNS with DF= 2.83. The broken line refers to equations 
(3.8) and (3.9) with x = 0.125. 
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tendency for lp to behave in a nonlinear way. If this is assumed to be the case, it 
follows that neither equation (2.4) nor equation (2.6) is valid. In other words the rate 
of energy transfer is not constant among the various scales of motion but fluctuates 
both in space and in time. This idea has been originally proposed by Mandelbrot 
(1974). A simple way to include fluctuations in the energy dissipation within the 
scaling laws (2.2), (2.3) has been recently proposed by Frisch and Parisi (1983, hereafter 
FP). Let us define S ( h )  the set of points for which 

l i m [ ~ ( x ) -  ~ ( y ) ] / ( x - y ) ~  $ 0  
X + Y  

and let us denote by d ( h )  the Hausdorff dimension of S ( h ) .  The Kolmogorov theory 
simply implies that d ( h )  =38(h-  1/3) while the P-model gives d ( h )  = 
DB[h - ( D  -2)/3]. Existence of singularities with arbitrary exponents h is consistent 
with the Navier-Stokes equations in the limit v + O .  Thus the possibility that d ( h )  is 
not a step function of h could be embedded into the scaling law of the velocity field. 
Generalising the considerations done at the beginning of this section, we can assume 
that the probability for a point to belong to S( h )  is proportional to A [ 3 - d ( h ) 1 .  It follows 
that 

( A V p ( r ) ) c c  5 dp(h) r1ph+3-d(h)1  (2.7) 

where p ( h )  is a measure concentrated on the region where d ( h ) > O .  The RHS of 
equation (2.7) can be estimated using a saddle-point technique. We obtain 

lp = minh[ph + 3  - d ( h ) ] .  (2.8) 

For a proper choice of d ( h ) ,  equation (2.8) might fit the experimental data of figure 
1. Physically, equation (2.8) implies that for a given value of p, lP is dependent on a 
particular value of h, i.e. a particular value of S ( h ) .  Hence the kind of instabilities 
needed to set up the sets S( h )  are picked out by the moments of the velocity differences. 
We mean, for example, instabilities which lead to vortex sheets or vortex tubes (for a 
review see Monin and Yaglom (1975)). Figure 1 can then be interpreted as the evidence 
of different mechanisms acting on the flow to select the probability distribution of 
energy transfer and dissipation. It is therefore clear that the P-model of FNS is not 
able to take into account the different nature of energy transfer. In the next section 
we discuss how to improve the P-model to deal with different sets of singularities. 
The idea that different moments of strongly fluctuating distribution can be dominated 
by different singularities has been explored, in a different context, by Berry (1977 and 
1982). 

3. A random &model 

Let us assume that, in the spirit of Mandelbrot’s weight curdling, the contraction 
factors P are independent random variables, which can take different values in each 
eddy i at the step n of the energy cascade. The Pn( i)’s are distributed according to a 
given probability distribution P (  /3 ). In this way the geometrical structure of intermit- 
tency does not possess a global dilatation invariance. The number of active eddies 
which are generated in a step is not fixed by a parameter as for ordinary ‘homogeneous’ 
fractals. The rules which generate multifractal inhomogeneous sets are drawn at random 
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at each step in length scale. Figure 2 shows two different naive pictures of intermittency 
according to either the deterministic or the random P-model. It is interesting to 
compute the fractal dimension of the multifractal set which is defined by 

(N, , )  - ZiD~ (3.1) 

where N,, is the number of active eddies at the nth step and ( ) indicates a space 
average, see Mandelbrot (1982, p 21 1 where DF is called the similarity dimension). 
We shall also use the average { } on the distribution P ( P )  

Figure 2. (a)  Schematic view of the P-model and ( b )  compared with the random P-model. 
The shaded areas are the zones active during the fragmentation process. 

An eddy of size h,, = $12 covers a fraction Bj = Zipj( i ) /  Nj of the volume occupied by 
its hypercube ‘father’. It follows that the number of active eddies after n steps is given 
by 

N,, =23n n B~ 
j = l , n  

(3.2) 

We can easily average (3.2), noting that the P’s are independent random variables: 

We have transformed the space average in P-average. By definition (3.1) we can obtain 

DF = 3 +log&3}. (3.4) 
D, cannot completely characterise an ‘inhomogeneous’ fractal because it does not give 
complete information on the probability distribution of P. The main point of this 
section is to show that this information is provided by the exponents &. 

Let us denote by l , , (k ) ,  k = 1 , .  . . , N,,, the N,, active eddies at the nth step. Each 
l , , (k) generates eddies of size l , , + ] ( k )  where k indicates its origin. The rate of energy 
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(3.5) 

This relation implies that the velocity difference 6V( I , )  = V, in an eddy generated by 
a particular set of fragmentations P I ,  P 2 , .  . . , Pn, is 

v, - i n 1 1 3  ( I = I  n p , ) -"3 .  (3.6) 

The structure functions are then 

Because we assumed that there are no correlations among different steps of the 
fragmentation process, it follows that 

d P i P ( P l , . . . , P n ) =  n P(Pi)dPi. 
i = l , n  i = l , n  

From (3.7) we can compute the exponents lP: 

ip = p/3  - ~ o g ~ { p ( ' - ~ ' ~ ) } .  (3.8) 

The probability distribution P(p)  is known in principle from the knowledge of all the 
p moments, i.e. of all the exponents &,. Figure 1 shows that the simple form 

P ( P )  = xS(P - 0.5) + ( 1 - x)S(P - 1 )  (3.9) 

leads (with x = 0.125) to a good fit to the available experimental data, x being the only 
free parameter. There is no good reason to choose a two-step probability distribution 
for P, of course. We have assumed that an active eddy can generate either velocity 
sheets ( P  = 0.5) or space-filling Kolmogorov-like eddies ( P  = 1)  (see Saffman 1968). 
We see, by comparing relation (3.8) and (3.4), that in our model the fractal dimension 
is 

DF = 3 - 50, (3.10) 

nevertheless DF is often computed by the energy dissipation correlation 

( E ( x + T ) E ( x ) ) -  r-p. (3.1 1 )  

D* = 3 - p is considered equal to DF. FNS have shown that under general conditions 

D* = 1 +&. (3.12) 

This relation is still valid in our model, with the further inequality 

DF= 3 +lOg2{p} 2 D* = 3 -lOgz{p-'}. (3.13) 

The equality DF = D* holds only in the. deterministic P-model. From the fit of the 
data of the structure functions given in figure 1, we have obtained 

DF = 2.91, D* = 2.83. (3.14) 

This result is an indirect check of the multifractal nature of fully developed turbulence. 
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4. Fractal structure of strange attractors 

The scenario of the random P-model is quite general and can be extended to the 
analysis of dynamical systems. Indeed the chaotic motions often lie on complicated 
manifolds of the phase space, called strange attractors, which can have an intricate 
multifractal structure. The fractal dimension DF cannot fully characterise an attractor, 
and further the FNS P-model does not describe the intermittency in a satisfactory way. 
We shall therefore introduce a set of easily computable exponents generalising the 
fractal dimension which are defined in terms of a ‘local density’ n ( r ) .  

Let us consider a time series of points Xi = X (  iht), ( i  = 1,2, . . . N )  of the dynamical 
system 

dX/d t  = f ( X ) ,  where X belongs to R d .  (4.1) 

The fraction of points which are contained in a hypersphere of radius r and centre X i  
is 

n , ( r ) =  e ( r - l x i - $ l ) / ( N - l ) .  

The moments of such a local density are (via a space average) 
Jfl 

( n ( r ) ¶ ) =  lim n i ( r ) ¶ / N .  

We define a new set of exponents + ( q )  by the relation: 

N-m i= I ,N  

lim ( n (  r ) ¶ )  - r 4 ( ¶ ) .  
r - 0  

(4.2) 

(4.3) 

(4.4) 

In a homogeneous fractal, (see figure 2(a)) ,  n ( A r )  has the same statistical properties 
as n( r )A and this implies: 

d(q)= DFq. (4.5) 

On the contrary, attractors do not possess a global dilatation invariance and it is only 
possible to show that 4 ( q )  is convex in q by a general theorem of probability (Feller 
1971). It is worth pointing out that 4(1) is the exponent v proposed by Grassberger 
and Procaccia (1983) to estimate the fractal dimension of attractors. 4 ( q )  is plotted 
versus q for the Lorenz model and the HCnon map in figure 3. One sees that + ( q )  is 
nearly linear at 191 S 1 but deviations from the line DFq appear at larger values of 141. 
It is evident that the q!~( q )  are analogous to the exponents Lp for the velocity fluctuations 
in a turbulent flow: the lp are linear in p in the FNS scheme where the energy dissipation 
is concentrated in a homogeneous fractal set. Grassberger (1983) has recently intro- 
duced some exponents essentially equivalent to ours. We note that the 4(  q )  as defined 
in Paladin and Vulpiani (1984) are easier to compute than the Grassberger ones. 
Indeed we do not need to use the box-counting method which is not easily handled 
for topological dimension d > 3. We shall see that our approach shows a connection 
between the structure of the attractor and the dynamics of the system. 

We have to relate the exponent 4 to the dynamical properties of the system (4.1) 
by an adaptation of the model proposed in § 3. We shall assume therefore that the 
same statistics are obtained by considering the positions in the phase space, at large 
times, of N points which are uniformly distributed in a hypercube of size lo at the 
initial time, instead of the N position at times iht of the evolution of one point. This 
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Figure 3. Variation of + against 9. Broken lines correspond to the line I$ = 9DF. Dots are 
4(9) computed with N =  IO4 for: ( a )  HCnon map ( a =  1.2, b = 0 . 3 )  (HCnon 1976); and 
(b)  Lorenz model ( r  = 28) (Lorenz 1963). 

possible because of the mixing property which is satisfied for chaotic systems. Let us 
describe the dynamics by a fragmentation mechanism which allows us to apply the 
formalism of the preceding section. At time A t ,  after the initial time, our N points in 
the phase space of the system (4.1) will be distributed in NI = adPl  hypercubes of size 
I ,  = lo /a  ( a  > 1) where P I  is a parameter given by the dynamics. Each new hypercube 
generates N2 = adP2 hypercubes of size l2 = l , / a  after a time At2. The p2's depend, as 
before, on their particular hypercube 'father'. We can iterate this process being careful 
to choose the breaking times Ati so that li+l = l i / a .  In this way the initial hypercube 
of size lo is reduced to a large number of hypercubes of size 1, = a-"l0 after n steps. 
Each hypercube has its own history determined by a succession P l ( a ) ,  . . . , /?,,(a) 
where a indicates the history which is considered. We have now to impose conservation 
of the number of points at each step. We have 

where p j ( a )  is the point density of a hypercube of size 4 obtained by a fragmentation 
history a. It follows from (4.6) that 

p j ( a ) - [  i =  n 1 P i ( a 1 1 - I  

We can estimate (4.4) putting r = 1, = loa-": 

(4.7) 

where the Pj ' s  can be assumed to be independent random variables. We can therefore 
perform the average (4.8) as an average on the probability distribution for the P of a 
single fragmentation: 

(4.9) ( n ( r ) q ) -  a - n d q ( p - q ) n  - a - n [ d q - l O ~ . { P - q } l e  
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The exponents 4 are thus 

4(4) = dq-loga{P-4}. (4.10) 

Relation (4.10) is quite analogous to the relation (3.8) in 0 3. One has in the case of 
a homogeneous fractal: 

PI(  a )  = a(DF-d) for any a and i (4.1 1 )  

and (4.5) trivially follows from (4.10). We use now the definition (3.1) to compute 
the fractal dimension of an attractor in our model. The number N ( r )  of hypercubes 
of size r (  = 1 , )  necessary to cover an attractor, in the limit r+O(n  + C O ) ,  is 

(4.12) 

where Bi has been defined in 0 3 as 

B # =  @ J ( i ) / &  
t=I,N, 

Averaging (4.12) one obtains 

( N (  I , ) )  - an[d+log"(pll .  (4.13) 

The relation 

DF= -+ (  - 1 )  (4.14) 

follows from the definition of the 4's in (4.10), the estimate (4.14) is in good agreement 
with the results obtained by the box-counting methods (Russell et a1 1980): 

Henon( a = 1.2, b = 0.3) -4(-1)= 1.20i0.01, 

Lorenz( r = 28) - +( - 1) = 2.06 ~0 .01 .  

The inequality { P } - ' S  { p - ' }  implies Y s DF. Y gives therefore a higher weight to the 
lower density regions of an attractor. { P - ' }  can however be a more interesting parameter 
than { p }  as the average value and the most probable one can differ. It is amusing to 
note that the estimate of DF by Y corresponds to the estimate of DF by D* in fully 
developed turbulence. Both 4(  1 )  and l6 are determined by { p - ' }  while DF is related 

We want finally to discuss, in terms of our model, Mori's (1980) estimate of the 
fractal dimension from the Lyapunov exponents (say A I  2 h 2 .  . .2 A , )  of a dynamical 
system: 

to { P ) .  

(4.15) 

where d,, do and d- are the number of A,  which are respectively greater than, equal 
to or less than zero. 

Let us define A,, the matrix that describes the linearised evolution of the system 
around the time t , :  

A ,  = af;/ax,/l=,", 

where t, = E , = ,  At,. Let K,( i )  be the eigenvalues of A,. It is possible to write B, 



3530 R Benzi, G Paladin, G Parisi and A Vulpiani 

as a function of K,( i): 

(4.17) 

K,J( i )  is the ith eigenvalue of the matrix A, computed in the centre of the j th  hypercube 
( i  = 1, d ; j  = 1, N ( l ,  - l)) ,  AtJ,, is the time needed to reduce the size of the j th  hypercube 
from to I ,  i.e. the time needed to have the fragmentation. AtJ, is determined by 
the eigenvalues K J , (  i )  < 0: 

At', =In a / I K , ( j ) l  (4.18) 

where ~ , ( j )  is the local contraction rate at the time t, around the centre of the j th  
hypercube. 

An estimate of ~ , ( j )  is not trivial. Mori assumed for ~ , ( j )  an average over the 
negative eigenvalues of the matrix A, :  

K n ( j )  = c lKjn( i ) l /d - .  
i =  I +do+d,,d 

By equations (4.12), (4.17) and (4.18) we have 

(4.19) 

As ( N (  I , ) )  - l Z D .  the fractal dimension DF becomes 

By (4.21) it is possible to see that DF is not related to any quantity easily estimated 
from the Lyapunov numbers. Mori's estimate (4.16) follows from (4.21) by assuming 
only (4.19) and no fluctuations of the eigenvalues of the matrix A,. 
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